
L_

J

368__

S

(NASA-CR-18726o) SOFTWARE ENGINEERING AND NqI-13087

THE ROLE OF Ada: EXECUTIVE SEMINAR (Houston

Univ.) 140 p CSCI 09B

Uncl as

_ G3/61 0308262

Software Engineering and the Role of
Ada

Executive Seminar

Glenn Freedman

University of Houston - Clear Lake

May 31, 1987

Cooperative Agreement NCC 9-16
Research Activity No. ET. 1

© ©

j
Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T. E. C • H.-N-I-C" A. L R" E. P. O" R. T

.,f
z

i "

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integratedprogramof research
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreedand entered into
a three-yearcooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The minion of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clcar Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sdences and Humanities, and Natural and Applied Sciences.

Other researchorganizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into th6 cooperative goals of UH-Clear Lake and NASA/JSC.

=_

w

Software Engineering and the Role of
Ada

Executive Seminar

m

m

u

Preface

This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by Glenn Freedman, founding Director of the

Software Engineering Education Center (SEPEC) of the University of Houston -

Clear Lake.

Funding has been provided by the Spacecraft Software Division, NASA/JSC

through Cooperative Agreement NCC 9-16 between NASA Johnson Space Center

and the University of Houston - Clear Lake. The NASA Technical Monitor for this

activity was Steve Gorman, Deputy Chief of Space Station Office, Mission Support,

NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

u

==

w

w

SOFTWARE ENGINEERING

AND THE ROLE OF ADA*

z

w

EXECUTIVE SEMINAR

UNIVERSITY OF HOUSTON-

CLEAR LAKE

w

SOFTWARE ENGINEERING

AND ADA

TRAINING PROJECT

*Ada is a registered trademark of the U.S. Government, A_PO

PROGRAM AGENDA
I I

__o

I • THE SOFTWARE CRISIS:

PROBLEMS AND SOLUTIONS

!1. MANDATE OF THE SPACE STATION

PROGRAM "

w

III. THE SOFTWARE LIFE CYCLE

SOFTWARE ENGINEERING

m

V. ADA UNDER A SOFTWARE

ENGINEERING UMBRELLA

.==r

PROGRAM GOALS

Review the software life cycle

_:H

v

Apply the concepts of current

software engineering to space

station issues

Examine the role of Ada+ language

in the software development

environment

+ Ada is a trademark of the US

Ada Joint Program Office

Government,

r

THE SOFTWARE CRISIS

v

PROBLEMS

AND.

SOLUTIONS

m

L
w

THE SOFTWARE CRISIS
II I

KEY ELEMENTS

v

Over budget and late

Actual life cycle cost

Modification is difficult,

time consuming and costly

The software invasion

COST OF SOFTWARE -

E

Original development cost

+

Maintenance/Modification costs

-i-

Unanticipated costs

v

w

PERCENTAGE OF BUDGET
100

80 _'_:,:._:.,,_._... _ Software

Ig50 Ig70 Iggo

TIME

HIGH PROJECT COSTS
I1

REASONS

v

Poor programming techniques

Poor design and specification

techniques

Improper choice of language

for job

:r

m

HIGH PROJECT COSTS
Y

L

PARTIAL SOLUTIONS

m

w

w

B.

w

Structured programming (mid '60s)

Software Engineering

- Measurement tools:

• Cohesion

• Coupling

• Fan-in/Fan-out

• Factoring

- Design Techniques

• Top Down Design

• Data Flow Design

• "Structured" Design

• Object Oriented Design

HIGH PROJECT COSTS

PARTIAL SOLUTIONS

= :

v

Improvements in language

design and development of

specialized languages

- Pascal

_. PtCtt

- Prolog

MANDATE

OF THE

SPACE STATION

PROGRAM •
w

PROFILE OF SPACE STATION PROGRAM

Large

Complex

Distributed Networks

w

m

m
w

m

PROFILE OF SPACE STATION PROGRAM
II] I

Embedded Components

- Parallel Processing

- Real Time Control

- High Reliability

- Safety

- Non-Stop Operation

Long-Term Life Expectancy

Over 100 million lines of code

w

SOFTWARE CHALLENGE

w

Many needs initially

undetermined and unknown

Many requirements initially

undefined

u Personnel continuity.an.

unrealistic goal

Vendor continuity an

unrealistic goal

w

SOFTWARE CHALLENGE
I Im

Many needs are never fully

determined - always changing

Integration of new functions

in an incrementally evolving

system

=.=

WHAT ARE THE SOFTWARE

w

=

Modifiability

* Efficiency

ReliabilityJSafety

Understandability

Correctness

Porta bility/Interopera bility

/Extensibility

SOFTWARE

MUST

BE

MODIFIABLE

AND

EFFICIENT

w

w

DEFINITIONS
||

MODIFIABILITY is the ability to

software, thus achieving new

or disastrous side effects.

control

results

change

without

within

undesirable

EFFICIENCY is the extent to which software performs its

intended functions with a minimum of consumption of

computing resources,

w

w

SOFTWARE

MUST

BE

RELIABLE
AND

SAFE

w

DEFINITIONS

RELIABILITY is the ability of a program to perform a

function under stated conditions for a stated period

required

of time.

w

SAFETY is the ability of software to protect life a,pd

property in the presence of "N" faults.

SOFTWARE

MUST

BE

UNDERSTANDABLE
AND

CORRECT

DEFINITIONS

w

m

UN DE RSTA N DABILITY

algorithms and data

easily interpreted.

isthe extent to which the software's

structures are easily perceived and

CORRECTNESS is the extent to which software is free from

design defects and from coding defects - that is fault free,

the extent to which software meets its specified requirements

and the extent to which software meets user expectations.

w__

m

w

SOFTWARE

MUST

BE

PORTABLE, •
INTEROPERABLE AND

EXTENSIBLE

w

w

DEFINITIONS
II I III

PORTABILITY is the ease with which software can be

transferred from one computer system or environment

to a nother.

v INTEROPERABILITY is the ability to "use" the entities that

are "ported" among systems and the properties of the

entities, the relationships to other entities, and the

properties of these relationships.

r.q._

DEFINITIONS

_L

EXTENSIBILITY is the result of models and rules which allow

controlled changes with predictable effects to be made to

both interfaces and the models of services and resources on

any side of the interfaces.

w

i

u

v

SOFTWARE

LIFE

CYCLE

w

i

w

v

B

!

i

__I
v

i

WHAT IS THE

SOFTWARE LIFE CYCLE?

.m

r

z

DEFINITION

i

S OFTWARE LIFE CYCLE

m.

v

A software engineer's model o[the

activities and phases involved in the

processes of producing and sustaining

a system's software products from

conception through retirement.

m

L

NASA SOFTWARE ACQUISITION

LIFE CYCLE MODEL
II I I

v

m
m

v

L_

* Software Concept & Project

Definition

Software Initiation

* Software Requirements

Definition

* Software Architecture Design

* Software Detail Design

z

v

v

NASA SOFTWARE ACQUISITION

LIFE CYCLE MODEL

I

a

Software Implementation

Software Systems Integration

a nd Testing

Software Acceptance Testing

and Delivery

Operation and Maintenance Transition

L

L

w

%_-

w

SUSTAINING ENGINEERING

ACTIVITIES
m_

System Requirements Analysis

Software Requirements

Analysis

Preliminary Design

* Detailed Design

* Coding and Unit Test

Computer Software Component

Integration

v

v

w

SUPPORTING ACTIVITIES

Documentation

Configuration Management and

Integration Control

Quality Management

Review

Verification 8c Validation

Communication Through the

Project Object Base

v

v

v

w

m
v

m

v

SUPPORTING ACTIVITIES
I I

Automated Support

- Technical Tools

- Management Tools

v

v

IMPACT OF CHANGE ACROSS

LIFE CYCLE
I]

PROBLEMS

v

r_

Time

Money

m

v

SOFTWARE ENGINEERING

I Ul

DEFINITION

"SOFTWARE ENGINEERING IS THE ESTABLISHMENT,

APPLICATION OF SOUND ENGINEERING CONCEPTS,

MODELS, METHODS, TOOLS AND ENVIRONMENTS TO

COMPUTING WHICH IS:

CORRECT

MODIFIABLE

RELIABLE

EFFICIENT

UNDERSTANDABLE

AND

PRINCIPLES,

SUPPORT

THROUGH THE LIFECYCLE OF THE APPLICATION,"

(C. MCKA Y, 1985)

IMPACT OF CHANGE ACROSS

LIFE CYCLE
] I

SOLUTIONS

Ea rly E rror Detect ion

Reusable Components
J

High Quality Documentation

Automated Tools and Methods

r

w

w

WHY SOFTWARE ENGINEERING

DISCIPLINED APPROACH TO SOFTWARE

DEVELOPMENT AND MAINTENANCE

USING:

Proven Management Techniques

Proven Technical Methods

"tlm_"

m

w

v

COMPUTER SCIENCE
!
!
!

SOFTWARE ENGINEERING

w

Modifiability * Effieieney

GOALS OF

SOFTWARE ENGINEERING

* Reliability * Correotness

* Understandability

II

DEFINITION

MODIFIABILITY

v

Modifiability is the ability to control

change within software, thus achieving

new results without undesirable or

disastrous side effects.

w

,.h=e

w

MODIFIABILITY

KEY ELEMENTS

Controlled change

* Change without surprises

* Change without unpredictable

side effects

w

MODIFIABILITY

IMPLICATIONS

Encapsulation of Code and Design

Generic, Reusable Units

Time Requirements

DEFINITION

EFFICIENCY

Efficiency is the extent to which

software performs its intended

function with a minimum

consumption of computing
resources.

EFFICIENCY
I IIII

KEY ELEMENTS

Producing the desired result

with a minimum of effort

or waste

Making optimal use of

available resources:

space, time, people, etc.

EFFICIENCY

IMPLICATIONS

Requires some compromises

- Time/Space

- Reliability/Time

DEFINITION
III I

RELIABILITY

v

--=

Reliability is the ability of a

program to perform a requi'red

function under stated conditions

for a stated period of time.

h

I III

RELIABILITY
|llIlll I

KEY ELEMENTS

w

Runs Well

Fails Gracefully

RELIABILITY
I I I

IMPLICATIONS

Need for enforced standards

Need for normal and exception

modes of operation

m

w

DEFINITION

U N DERSTAN DAB ILITY

Understandability is the extent to

which the software's algorithms and

data structures are easily perceived

and easily interpreted.

w

UNDERSTANDABILITY
I IIII

w

KEY ELEMENTS

Lw_

Systems can be understood in

appropriate detail throughout

the life cycle

z

Z

Critical goal in management

of complex systems

w

UND E R STAND AB ILITY
I I I IIII

KEY ELEMENTS

m

Development engineers will not be the

sustaining engineers

* In a large, complex, non-sto_,

distributed system which evolves

incrementally over more than 20

years, a principal challenge will be

integration control.

p.
i

i
17

w

UNDERSTANDABILITY
I I

w

IMPLICATIONS

L.

m

I

Design Decisions

Documentation Standards

Language Selection

_m

=

w

i

w

L

DEFINITION
III

CORRECTNESS

L

__r.

Correctness is the extent to which:

software is free from design.and

coding defects -that is fault free

software meets its specified

requirements

software meets user-expectations

==_

CORRECTNESS

KEY ELEMENTS

w

The software successfully meets

the requirements as written

- Functional Requirements

- Non-functional Requirements

w

7_

m

v

i

IWl

CORRECTNESS
illill i

IMPLICATIONS

=

w

Normal operations are considered

Exception conditions are cor_sidered

Software can be verified and validated

- Verification - Are we building it

right?

- Validation - Did we build the right

thing?

v

v

v

r_m

SOFTWARE ENGINEERING
PRINCIPLES

m

v SOFTWARE ENGINEERING

PRINCIPLES

.T_

v

w

:_ ABSTRACTION

INFORMATION HIDING

MODULARITY

LOCALIZATION

CONFIRMABILITY

COMPLETENESS

UNIFORMITY

w

T

v

w

DEFINITION
IIIIII I I

L

ABSTRACTION

w

Abstraction is an intellectual tool that

allows one to deal with conceptual

aspects of a software system apart

from the implementation details

allowing an overview of an entire

system or its components.

_r

i

v ABSTRACTION

KEY ELEMENTS

m

* Limit amount of detail

* High Levels -- minimum cletail

* Top-down Design

* Essential information only

* Focus on WHAT not HOW - separate

the spe¢ from implementation

v

_n

DEFINITION
|II

INFORMATION HIDING

= .

v

Information hiding is the process which

removes all unnecessary details, from a

user's access thereby protecting the

software system from unexpected or

unwanted changes.

L
w

v

INFORMATION HIDING
II | I

KEY ELEMENTS

v

"What" is visible (in Spec) .

"How" is hidden (in Implementation)

Makes certain details inaccessible

Protects implementation from

accidental corru ption

w

m

m

DEFINITION
I I

MODULARITY

m

Modularity is the purposeful structuring

of elements (or software modules)

that are integrated to satisfy

system requirements (loosely coupled).

L
w

MODULARITY
II I

KEY ELEMENTS

u

m

w

Logical division into stand alone units

* Units have specific function and

clearly defined interfaces

* Discrete components

* Change to one component has

minimal impact on other components

w

11

DEFINITION

_v

LOCALIZATION

Localization is the process of creating

strongly cohesive programming.units,

that is, locating elements which

exhibit a high degree of functional

relatedness within one unit.

v

LOCALIZATION
(Separation of Conoerns)

KEY ELEMENTS

m

Logically related pieces

Cohesive - internally tight

Loose connection between modules

Independent -loosely coupled

Allows firewalling of the effects

of errors, i.e., prevents errors

within one module from affecting

other modules.

v

__=

DEFINITION
I !

CONFIRMABILITY

Confirmability is the evaluation of the

software system and its components

from a requirements perspective or

a design perspective.

CONFIRMABILITY

KEY ELEMENTS

--=

Can be decomposed and tested

Documentation through all of the

life cycle phases, including

design decisions and rationale

m

DEFINITION
II

COMPLETENESS

Completeness is the process of

ensuring that all design elements

are present in the system.

v

COMPLETENESS
I18 [II

KEY ELEMENTS

All important elements specified

in the requirements and the design

are present

DEFINITION

UNIFORMITY

Uniformity is the degree to which

consistent notation is used.

_=

III II

UNIFORMITY

KEY ELEMENTS

Consistency across life cycle

Standardization in:

- Language

- Documentation

- Coding Style

- Conventions

L

SOFTWARE ENGINEERING

TOOLS AND METHODS

DEFINITION

LIFE CYCLE

The issues of creating, building
"fand sustaining any system rom

conception to retirement.

DEFINITIONS

TOOLS

WITHIN

SOFTWARE ENGINEERING

TOOLS AND METHODS

- APPLY AUTOMATION TO SOFTWARE

THE CONTEXT OF THE METHOD,

DEVELOPMENT

z,

METHODS - PROVIDE A SYSTEMATIC APPROACH INDICATING HOW

TO DEVELOP INTERMEDIATE SOFTWARE PRODUCTS WITHIN THE

CONTEXT OF THE LIFE CYCLE MODEL.

SOFTWARE ENGINEERING
TOOLS

E r

w

m_

SOFTWARE ENGINEERING

TOOLS
I I I

Program Design Language (PDL)

Ca n be co m p i ied

- Early error checking

- Early interface checking

Allows for decomposition of problem

Design is visible early

- Limits risks

Flows naturally into code

Possible drawback:

- Tendency to focus on detail

not desig n

SOFTWARE ENGINEERING

TOOLS

EXAMPLES OF OTHER TOOLS

- Languages

- Editors

- File Managers

- Debugging Tools

- Complexity Analyzers

- Report Generators

SOFTWARE ENGINEERING

METHODS

L

SOFTWARE ENGINEERING METHODS
F III I I

STRUCTURED ANALYSIS AND DESIGN TECHNIQUE (SADT)

DEVELOPED BY DOUG ROSS OF SOFTECH IN THE EARLY '70S.

THIS IS A MANUAL SYSTEM WHICH COULD BE AUTOMATED.

FEATURES: " FORMAL BLOCK DESIGN "

" SIMPLE

" CLEAR

" SUPPORTS MODULARITY

DRAWBACK: III WITHOUT AUTOMATION IT IS

TEDIOUS TO KEEP CURRENT

w

SOFTWARE ENGINEERING METHODS

STRUCTURED DESIGN

w

w

FOCUS IS ON ALGORITHMS AND

OPERATIONS

WIDELY USED IN FORTRAN

APPLICATIONS

w

= ,

SOFTWARE ENGINEERING METHODS
T I

JACKSON'S DATA FLOW DESIGN

Focus is limited to the data structure

Data driven design

Widely used in COBOL applications

u

SOFTWARE ENGINEERING METHODS
i] J l]

OBJECT ORIENTED DESIGN (OOD)

m

Method:

- Select/Develop informal strategy

-Identify objects and

operations on those objects

- Tool: Ada

= :w

u

i

SOFTWARE ENGINEERING METHODS
II Im

OBJECT ORIENTED DESIGN (OOD)

w

E

Approach

- Considers data structures and

algorithms as a unit - object

- Separate WHAT from HOW

-- =

w m

v

w

r I

w_

ADA UNDER

A SOFTWARE ENGINEERIN(.

UMBRELLA

r _

w

r

r

w

m

w

w

ESTION:

w

WI-IY WAS

ADA

DEVELOPED?

w

- =

SOFTWARE WAS:
III Ill

m.

w

COSTLY

UNRESPONSIVE

UNRELIABLE

LATE

UNMODIFIABLE

NON-PORTABLE

INEFFICIENT

POTENTIALLY UNSAFE

_- ADA UNDER

A SOFTWARE ENGINEERING

UMBRELLA
I |

RATIONALE FOR DEVELOPM.ENT

Costs up

Quality down

Changing needs

L

M

m_

w

SOFTWARE ENGINEERING

AND THE ROLE OF ADA

u

Overall life cycle costs must be

reduced

New approaches are needed.to meet

the software challenge of the future

and growing life cycle issues

It is imperative to identify sound

software engineering strategies

Software engineering techniques

must be applied across the life

cycle

w

THE HISTORY OF ADA
REQUIREMENT DEFINITION PHASE

HOWLG: Higher Order Language Working Group (DOD)

STRAWMAN: First draft of requirements for DOD's

language °

programming

WOODENMAN: Comment on Strawman

TINMAN: Comment on Woodenman

IRONMAN: Comment on Tinman

STEELMAN: Comment on lronman

w

THE HISTORY OF ADA
REQUIREMENT DEFINITION PHASE

RFP's solicited to design language,

z

4 Proposals selected to proceed.

m

M

--=

L .

THE HISTORY OF ADA
REQUIREMENT DEFINITION PHASE

STEELMAN: Final language requirements document.

DOD 5000.29: Use only DOD approved language in

defense systems. "

DOD 5000.51: Listed approved higher order languages.

THE HISTORY OF ADA
II |I

DESIGN TEAM SELECTION

7/78

11/78

5/79

Blue Team: SofTech

Yellow Team: SRI International

Red Team: Intermetrics

Green Team: Honeywell Bull

Red Team: Intermetrics

Green Team: Honeywell Bull

Green

Team

Team: Honeywell Bull

Leaders: J. Ichbiah

J. Ba rnes

R. Firth

_=L,=

THE HISTORY OF ADA
NAMING THE LANGUAGE (MAY 1979)

* Ada Lovelace (1815-1851)

- Worked with Charles Babbage on his

difference and analytic engines

- Considered the world's first

programmer

- Augusta Ada Byron,

Countess of Lovelace,

Daughter of poet Lord Byron

/

THE HISTORY OF ADA
I I

ENVIRONMENTAL REQUIREMENTS

SANDMAN:

PEBBLEMAN:

Initial analysis of environment requirement.

Revised environment requirement.

STONEMAN: Finalenvironment requirement.

THE HISTORY OF ADA
l|m i]]

MILESTONES

=

ACV - Ada Compiler Validation

AJPO - Ada Joint Program Office

* LRM - Language Reference Manual

January 198.5

* ANSI MILSTD 1815A (February 198,3)

ADA UNDER

A SOFTWARE ENGINEERING UMBRELLA
I I

DE LAUER PRONOUNCEMENT (1985)

"...THE ADA PROGRAMMING LANGUAGE SHALL BE_:OME THE

SINGLE, COMMON COMPUTER PROGRAMMING LANGUAGE FOR

DEFENSE MISSION-CRITICAL APPLICATIONS. EFFECTIVE

1 JANUARY 1984 FOR PROGRAMS ENTERING ADVANCED

DEVELOPMENT AND I JULY 1984 FOR PROGRAMS ENTERING

FULL-SCALE DEVELOPMENT, ADA SHALL BE THE PROGRAMMING

LANGUAGE...."

ADA FEATURES
I1111 I IIIJ[

Strong Specification

Strong Typing

Tas ks

Generics

Exception Handlers

Packages

F

DEFINITION
| I

u

SPECIFICATION

* "A specification is a document that

prescribes in a complete, precise and

verifiable manner the requirements,

design, behavior or other

characteristics of a system or

system components." (IEEE, 1985)

v

STRONG SPECIFICATION
II I

KEY ELEMENTS

* All program units have a declared

interface or specification. •

* Ada enforces compliance with

this interface.

_W

m_

I1

DEFINITION

TYPING

A type characterizes both a set

of values and a set of operations

on those values.

m.

STRONG TYPING

KEY ELEMENTS

Ada is a strongly typed language

* All objects (variables and constants)

in Ada must have a type

A type defines:

- A set of values

- A set of operations allowed

DEFINITION
II I |

TASK

A task is a program unit that may

execute in parallel with other

program units.

TASKS

KEY ELEMENTS

An Ada task operates in parallel

with other Ada program units

* Tasking provides parallel processing

- Single Processor Computers

- Multi Processor Computers

- Distributed Networks of Computers

w

TASKS

KEY ELEMENTS

An Ada task operates in parallel

with other Ada program unit's

* Tasking provides parallel processing

- Single Processor Computers

- Multi Processor Computers

DEFINITION
II I

GENERICS

Generics are parameterized templates

of a program unit that allow reuse

of code and that allow libraries of

programs to be built.

GENERICS

KEY ELEMENTS

Generic unit is a template or mold

for other program units - a set of

subprograms or a set of packages

Generics are not executable

=

GENERICS

KEY ELEMENTS

Formal parameters (those in t he

template) are replaced with actual

parameters when it is used

r_

DEFINITION

EXCEPTION HAN DLERS

m

An exception handler is code that

tells the program what to do if an

exceptional situation or error

occurs.

GENERICS

KEY ELEMENTS

m

m

i

INSTANTIATION is what happens when
0

a generic is used. An executable copy

of the template is created and actual

parameters substituted. An

"instance" of the generic is created.

EXCEPTION HANDLERS

KEY ELEMENTS

n

Exception Handlers deal with software

errors without operator intervention

Exception events considered

Execution abandoned

Handlers may restart under

better conditions

z

w

w

t

L__

J

EXCEPTION HANDLERS

KEY ELEMENTS

Allows for user-defined exceptions

* Allows for fault-tolerant programming

w

DEFINITION

PACKAGE

A package is a group of logically
related entities.

m

i

PACKAGES
II 1

KEY ELEMENTS

A package forms a collection of
0

logically related entities or

computational resources

A package ENCAPSULATES (puts a wall

around these resources)

===

PACKAGES

KEY ELEMENTS

T

w

Package parts:

- SPEC: Contact between the

implementation and user,

identifying visible parts of the

package. This interface specifies

which parts of the package may

be used and how they are used.

BODY: implementation hidden

from u ser.

PROS AND CONS OF ADA
I|

w

PROS

Reduces overall life cycle costs

Best language tool available.to meet

the Space Station needs

Improves productivity over the

life cycle

Correctly used, Ada supports

software engineering goals

and principles

PROS AND CONS OF ADA
I|1

CONS

Harder to learn
0

Availability of tools and trained

personnel

Ada environments are not

standardized and run time

environments are loose

CURRENT STATUS OF ADA

Increasing number of validated

compilers

Over one billion dollars committed

to Ada projects

Involvement across the government,

industrial and academic sectors

throughout the free world

m

m

u

CURRENT STATUS OF ADA

w

The broadening commitment to Ada

is producing a complement of

reusable components, libraries of

software building blocks and

experienced people.

SUMMARY OF

KEY
POINTS

m

_ m

v

w

SOFTWARE

MUST BE DESIGNED

TO WORK CONTINUOUSLY
FOR 15-30 YEARS

AT MINIMUM

r

w

w

2016

AD

rw_

v

SOFTWARE ENGINEERING

PRACTICES HOLD

PROMISE FOR
MEETING

LIFE CYCLE

NEEDS

-..__

SPACE STATION

SOFTWARE
MUST

SATISFY
THE

m
m

SUPER MICE

z

SUPER MICE

SAFETY
UN DERSTAN DAB IMTY

PORTABILITY

EXTENSIBILITY

RELIABILITY

MODIFYABLE
INTEROPERABILITY

CORRECTNESS
EFFICIENT

ADA WAS

DESIGNED TO

SUPPORT THE GOALS OF
S O FTWARE E N GINE E RIN G

z

3

J j

k

......... , __., _ _!-_1 _', Y

i

- _..................... '..... _"1 _,'_' "_ - T:_ /, :' :='" :"" : _: ", "_ "- ' ! '" -

::_l"'_ :. _,'-':;"t" :-"._ " -L-,E_; (-':+ ' _'_ " _;_"' ' t'- "" ' ' -.;._-- ,...,.:..:!-.,_ .-_-

;_.:;.:_d_,_=.::, ,::_h_;J,_._Ler E,'_-_ten,:s. (G. E,o,-;_h, p._]. ",",.,)

_ ._ uha. ali-'_,'-: _,_e +_(3AE'STF.ACT!OM i= an intel_=ctue, l t,___l _

i(:: '_sm--nt.--.,tlo? detailE _.="1,3_._i,,=,-_ an c.'E,",ie_: ,_-f a',, e:'. _'.FE E.,'=-tE._. _:- it-_ =

AC_ - A-z_ciati._n _or Computing Machiner'/

A.]r0 -. /_d__. ,]clnt Program Of_ice

AN_I - American Mati_nai Stan_ar_ ln-titute

A ,_E:E - A:].-:-, F r,zJz_-ammi ng Su_:rt En .i r:nment

CC_3; - !:o,_,mcn _4r--,EInterfece 'ze_

-,..'..--=t,n'_ _ r,C_'_ ti'_h¢'l:' bCJL'._:_d C'" r-_l _ "_ its i _'•" , a_E el-r, al E1E_T_,_,*S E,I "= t(:3

or;e ar:':_her ;.;l:._.r_ a mr.dL,le. ,G. B_.oEb. pg. _?.

...._"*FLET_-t'_ES---; is the _r-3c,ii_= c{ ensurin_ that _Ii dek"ar. =lement_, are

pr-_-en __ in the =_=_tem.

CCIIF-IF.MABILIT":' is the evaluation of the soft_g=-.r-= - .,,-.--..t.=m ar, d its

c_o;;,_n,--.r.__s fr_m a reqL',irements per=-pe,-'tive oF a d_--:._gr_ pEr-___ti've.

CC'%!FLI "'_" a m__-_ure _f th = =trength c,f int_=r:__r.r-..==+i_n am:,r',g m_:ule-: 1.2 -" _ - ,

rE. ._/,o:.:,__;"i.pg. 29)

C(]'FFEET?_EEE is the e_'_enL '-_, _nich ----;f:twE_C_ IZ _r_e _r-_m :2e_i_:'_

_::!s(:__:; a;.d _'°._m _ding de_.ect_ - th_L i_ _:L_IL _.FEe -- th,z ,Z;_-_r:_- tO

wl",i-_h _o_t;'_are meets it-= speci÷ied reqJlremenLs z_n_ the e_te;;t t:

':,iE,_ :.:.Et_are meets u_er- e::pe_tatl_ns.

DEE Unite_ E_ate_ Departmen_ of D__fen_e

ORIGINAL PAGE IS
OF POOR (_JALITV

r,

prc_.--.;i what tz, de if an e:,c-_-.,pzional =ituation or error oczur-.

[[/"" r:. i _- " t', _,_,_,L, ILI'TY :s +he re-sult c{ m,Ddeis and r,J.l=:-:which all,_' czr._-r_il,__d

char, gee _,_:th pr.=_ictable e;f_ct_ _"-,.....te made t:, _-__,tr_i.;__,, ___=-=s _,r,'Jt_-.
m--.d:..'1-" c.,z _er- , i,:es -=.rl_2 i-ei.%ur',ie_ _n _r_;. Sld_ _-: the lnter_ ezes.

FA[ZTE'F:,UG i= = _._--c,_es,z that diEtr-LL.u":_- E=,n::-::i :-= "._-,_.': d_::_:.:,,.- -:,'"

I::--: ,T,::_:_.Z÷.:It.g.2 tO: t,h_ pcint at _,'hi"l_ _;:ri: i- :._"_:_'_,:t-z-, At; _: -::m::ie of

fac-_zr'tng i- tP, e tc.p-.d-.wm apDr.,-.3,:-_ to humar'_ cmJaql.-_ti_n--.--, t.-r:-_2_m__.n.

p_. !49)

FAU-!r_ :.r, di'-at.=- haw mar-../ module--, dire=tl ;' ,"",ntrol a gi .er; ,:,=.=,..! a.

':_-,,,-_===,.:_n, ag. I50)

GEHEPICE are parameteriz_=d templates of a pr-gr-_m '.r,t_ th:.': all:'.._

,-=u:_ c" :_ and that al_w li _ =_ ieS _f p,"co;'-e.'r::_ De _,_,,ilt.

ItIFC.F _ T _ =....... , HIr'ING i- = ,.,_e pre__e-_ _hich remu.'..'e-_ a!, ,.:r,r,_z_==ar',

d=tail -- ._FO,T,a u_er"s a-,:_---.S ther-_-b:, prote,:tin__ the- -_oftw-,r_ =ystem

from une:.'perte_ cr un"_ante _- cn_r,_=_,-_--.

.... _'p.r',E._r-.z, r. • IT " .at t, '.......................... L ; i= Line : _ i. _ =- th_ cr;ti _== _ --
,_ = . ti =:- 'in="parted" a,T,cn'z_ "_ystem- and t_,= p,r.mp:ertl=_ Df "he -_nti __.

r_ll=+iCc--hli2_ t._] other er,_iti=-n,__. and tln=_ prc, p_l-tie-_ cf t_-_se

re! ati cr,_r_i p--_-.

KAFSE - Kernel of the Ada Programming S,_pport Er,,xir:,nment

LIME: CYCLE - Creation, c_nstru:tion and maintenan__e _f a.m'.. s'_'._.t=_.-.;fr,:..,_,:

Cczr'_:__-_'t'-,n tC retirement.

LEiE..,I_:- ;Titrl ;.:_ the p,rcce£- c,f creatln_o etr_r,;l., cr_.,he.-Eive pr_gra,_,mln:

,j;-,i+z, t _,.... i_, iocatin:] e.ler.,,_r, ts which _;_,;it.:_ _: h!..ar, degr-_-e of

fun:_icc_al r_].at-_dr_esE _,_I.h.r, c,r;e L:n]._

MAF'SE Minimal Tocl Set oT the AdB F'rDuramn,:img E UDDTrt Er-,.ir_.nr,,ent

blIu-_,C' ,_,-,,_:l--.l._.. - Se_ ANSI.."MIL-u.,D I81,H_*"-I_'._.-"

''-' rI,,._::'' IT'.' iE the -,m_ili1_.' t,'_ ¢mntr_l mP,mr'_u_ _.;:,t_ir. .=.]_z_-'.rm _hus

act,, _',ir';u r, eH remult= witihout un_e=_irabl= mr disa-trcu- -;de effe= _-.

,._._._,__,-,Ty is tin,--- purp:,s_ful =*ructuring of E!em,_r.t-s ':__r -z._-_twP.,re

II_C.GLl]_-:_.' thE.,__ arm= integrated to sati sf,, s"_=-tern rezulrement- ',.'czsel ',

coup]. ed) .

OE'..'ECT -- An cb'_ct in Ad..'._ _=.._ any kin 4_ E,f u_-*._.l eLe:T,_'r',t, '.__.t'iatl£-'-"-,
.. =._=. _snt.

ORIQINAL PAGE IS
• OF POOR Q4JALrT'y'

Or-.:.+_,_ i-'+': "" [.r--:7_" :}."+: ,............. -,--......... ++"-:I+:..- + [(':, _.+++_ "",[...'I-:....... _ -- -' :Th.: C' _ '-"+"" 9, _:.:;++"::. m::.__ +:=.:" ;:]

l'i+-=_ I -- I at_ -__iT++I + I =: -."" P- c J.

' "- 3 '" 7. ;'": - ';:- :, i g :'", 3_.:: ", :_+ +... . _ _

F'F©JECI OBJECT B_+,c.E - sourc=_ c.-de and sDftwar_ tDol-- a',sil-_'e,__+ z:r.

LtSe •

F,L__! _.,E .+" IT'," _, - _. , + _-, f'-;=,c _-- - +

-c _-, _' atad c-_r;_iti_ns T_-++" _..=,tared p=_ri_d --" time.

SAFETY i m the ability _4 software to, protect life :,.P,d _rc,_,e+"t', it, the

pr-,:-_er_:e o{ "N" faults. •

"SOFTWAF, E ENGINEERING is the establishment, and applicmti_n of sc,und

et-;g:neerlng ,zcnceDts+, princi#le-_-, models, m.zth.md_, tools and

en.lronment_ along with mtandards, guidelines and ;.ractlmes t+. _J:mer+

<c,mpL, ting which is: col-root, moOt/table, re!i_=b]e, e._+icieqt, end

under+-__tandable, thrc, u.gh the life c',cle _4 the _=:_Dli:atic, n." -- E.ha,_-le:

['i':.: I _7__, ,, i r_

i+

SOFTWAF:E ENGIPIEEFING METHODS - provide a =_y_--tem_=.tic approach

indicating h_w to develop intermediete software products within the

cc,nte:+t 0+ the li+e cycle model,

SO_TWAF:E ENGINEEPING TOOLS - apply automation to software de,+ el o#.ment

++;ithin the context of the soTtware engineering method•

S[)FTWAFE LIFE CYCLE - A software engineer's model of the acti',ities

and phases involved it, the _r-o.:esse_ of producing and sustaining a

sy__tem:'s software products from conception thr_,:gh retirement,

SPECIFICATION A specification i- a document that prem:ribe.s in a

co,replete, precise anO verifiable manner the reo'_tir-=mer, t -, _esign.

beha,lO:-, or other characteri sties of a system or+ s+,stem ccmp:r++nts. "

(IEEE, I_8_)

TASt:: - A tas_ is a program unit that may execute in _aral!el ++ith

ether + _rogram units.

TYFING - A type characterizes both a set c,f value__ and a met _,_

cDemations on those values.

UIL. E,-.=,,,,NE, AE. ILITY is t'"e e.,tant t_ _-+hich the -__,_t;4.i_re" ,-- al}:,rith_.,- at-,

dat_, stFLtcture_, are easl I, DEFcel red and easi I, interg, reted.

. ORIGINP-L p_GE Itl
OF pO011 i_Lff_'

UN!F!Z, FI!IT", _,_. the deqree to _,Jh_ch cor,-_.i---tent -_.. r,u_ati_,r; i- u-ed tt_ough
the- !i{e _.'_'cle.

r--

E

ORIGINAL PAGE tS

• OF POOR QUALITY

_,...'

0VEPV IEW

SDft_,Jare ErTqineerim_ and the. Fole _f Ada

v

E,I:,.j,z.,--t'v_ _ : T.:i introdL,,-ei the b asi_J termir, cl,_7_7' and

cc,ncep _,__ r_,f Seft_.Jar== Er,gir, eerin__ _.,,_-__ Ad.,.

in this seminar the participant will:

Re,xiew the life cvcle model.

_ Observe the application oT the go_Is

and principles of software

engineer irig.

Gain an introdc',cter'/ ._;n.d_,r_t_nd:-_ _f

the fe__tures of Ada language.

_:E'EZ,_T,_',ended for" Manager_ dealing with Shuttle pr e -ezra.

Space Station proJects or an/ sc÷tware
related effort.

F .-___-reqLii _ i__es : None

Course Cutline: i .

2.

3.

4.

5.

The Software Crisis: F r]0blem- and

Solutions.

The Mandate of the Space Stati=,r;

Program

The Software life Cycle Model

Software Engineering

Ada Under the Software Engineering
Umbrel 1a

C,DLtr--3e Material : Notebook

Fc, r mat : Lecture using foils

' !.JI _ t. i .D !q :
p__:. hours

e

ORIGINAL PAGE IS
OF pOOR QUALI'I'Y

EXECUTIVE SEMINAR

OUTL IHE

Software Engineering and the R,'Jle of Ada

II.

I The Software Crisis: Frobl_m=. ,-_.F-,Oa.-lu*• = -, i c,r:

['ISCLI_S tlne "software crisis" envirenment. !der_tify
the key elements and cause_J of this crisis.

Over budget and late

* Actual life cycle cost

Mc.dification is difficult, time coneuming and costly
_: The Softv_are Invasion

Mandate of the Space Station Program

1.0 Pro. ide a brief profile of the Space Station

program:

* Large

* Cored I ex

* Distributed networks

* Embedded componenus

* Long-term life e;_pectancy

* Non-stop operation

* Over i00 million lines of code

. ('I

3. O

Describe the software challenge imr, c,sed by' _=u=h

prmjects:

* Many needs initially undetermined and unkno_.n

* Many requirements initially undefined

* Personnel continuity an unrealistic goal

* Vendor continuity an unrealistic goal

* Man,/ needs are never fully determined - alwa',s

chang ing

* Integration of new Tunctione in am,

incrementally evolving system

Identify the eoftwar'e requirements impo-ced b','

this challenge.

, MODIFIABILITY

* EFFICIENCY ..

* RELIABILITY/SAKETY

UNC, ERSTANDAB ILI TY

* CORFECTNESS

* FORTABI LITY/INTEPOPEFABI L ITY/EXTENS IBIL ITY

ORIGINAl/ PAGE t'3
OF POOR QUALITY

Ill. The Software Life Cycle

I, C) Define Software Li;e Cycle.

-: r", e_ 1...']. CELLS5 ti,_._, co_x,pr_'.!]enti. ,5t 4-.k_E I i f-_ "7','c z] e

mc.del pertiner,t to NASA/JSC prc, jec. t_.

Acquisition A,_-_:i,.ities

NASA Software Acqui-_itior, Lif= Cycle blodel.

(Software Man__gement & Assurance Program)

* Software Concept 5 Project Definition

_ Soft_4are Initiation

* Software Requirement- De_ir;Iti_,n

Software At chitecture Design

* Software Detail Design

* Software Implementation •

* Software S-/stems Integration _: Testing

* Software Acceptance Testing L: Delivery

* Operation & Maintenance Transition

Sustaining Engineering Activities

* System F:equiremsnts Analysis

* Software Requirements Analysis

* Preliminary Design

* Detailed Design

* Coding and Unit Test

* Computer Software Component Integration

....._, Supporting Activites

* DocumerTtat i on

* Configurati.Dn Management

* Ouality Management

% Revl ew

* Verification ,_-:Validation

* Automated Support

* Communication through the Project Obje,-t

Base

ORIGINAL PAGE IS
OF POOR QUALITY

3

Discuss the imp=,ct _{ change in ter-m_ o{ tim£ -_r,d

mc,c,ey acros£ the life cycle. Inc!,._de a =peci(ic

reference to the current cost of the sustaining

engineering or maintenance plnase. Suggested

solutions:

E:arlt errer detectien

_: F_usable CO,T4:sor_er_ets

High qua!it_ _ S_su_entatior,
A.Jtc,mated toe!_ and methods

IV. Sol t_,,lare Engineering

I i (_)

, t"_

Give _er_ing definiticns of Software Engineerlr,_ 2.

I.I Disc,_I_- the m,_3've fr(D_, traditional Co,'np,Jter

Science t_ Eoftware Engineering ir,eindu_tr',
and a,-aoemi a.

Give examplee of prejects experienclr_

productivity increases and fe_er errs-r= with

the application of soft_-Jare engineering

m,ztheds.

The goal_ of seft_-Jare engineering:

MOD!PIABILITY

EFFICIENCY

RELIABILITY

UNDERSTA_IDABILITY

CORRECTNESS

Identify and briefly describe the principl-._= of

software engineering.

_ ABSTFACTION

_ !MFOP, MATION HIDING

MODULAR ITY

*_ LOCALIZATION

COHP IRMABIL ITY

COMPLETENESS

_ UN IFOF, MITY

OI I ,INAL PAGE IS
OF POOR QUAUTY

Brie_!y identif,' sc.,ne mf the tocl_; mnJ met;-.ods

for applying s:.ft_,_are engineering goals and

principles to the !ife cycle phas,ms. For- each of

the tools and method- di_:ussed give ._ brief

bac_:ground, when it was de'.,e!_ped, by whom, and

who use_ it.

,'I,_ _-h o,J s :

* Strv.(itured Analysis _ Design Technique_ ,',EAE..T,

* Stru,-tured Demign

* Jac!-:._on'- Data Flow Desigr:

$ Object Oriented Design (OOD)

Toc, ls

Program Design Language (FDL>

Other Tools

- Languages

- Editors

- File Managers

Ad-,. Und._=:. a .Soft_-.are Engineerin,:_ LJmbl."e].la

i .0 Introduce Ad_ language and er;vironments with a

brief himtmric_,l overview, identif/ing the

mi!estones of its development.

I.i Give the rationale Tor its development, the

DOD etud'," and findings. Identif. the design

teams in the competition, tln_ _innin9 team

and team leaders (Jean Ichbiah. D.G.F.

Barnes, R. Firth). Explain h_v_ Ada was

named.

1.2 F:eview the miles:tones in the evolutic.n c;

requirement--- Tor A,_a programming

environmer,t_. Give a s,,nc,psis c,f the

Stoneman a_-c.hitecture suggested rot these

environments, including _:AFSE, MAFSE, AFSE.

Discus-: tlne development of reusable,

sharable libr-_ries of t_ols. Be e:,pllsit

about the current avail__bility of these

tool s.

ORIGINAL PAGE IS
OF POOR QUALIFY

=.

Briefly identify the unique Aria features end its

relationship to soft,gate engineering.

* STRONG SF'ECIFICATION

I STP;CN5 TYPING

* TASKS

* GE_ERICS

_ EXCEPTION HAWDLERS
;I(F'ACI<AGES

3.c_ Summarize the prose and cons of Ada.

4.0

PROS :

* Reduces o,_erall life c',cle costs

* Best procedural language tool reval!able to meet

Space Station needs

Improves productivity over the life c.cle
Correctly used, Ada supports software

engineering goals and principles

CONS :

* Harder to learn

Availability of too!= and trained p=_r_,-,r,r:e!

* Ada environments are not standardized __nd run

time environments are loose

Summarize the current status of Ada

* Increasing number of validated compilers.

* Over one billion dollars committed to Ada

projects.

$ Involvement across the military, indu_trlal and
academic sectors.

$ Production of reusable components; building of
libraries.

w

w

m

w

5. C) Conclude the session Dy _=ummarizing the points
covered.

$ Overall life cy.cle costs mu_t be reduced.

New approaches are needed to meet the software

challenge of the future and growing life cycle

iSSLLeS.

$ It is imperatlv_= to identify sound software

engineering strategies.

$ Software engineering technique_= must be applied
across the life cycle.

* Ada. baselined for the =_:pace Station. _a3

designed to implement the goals and prinaiples

of software engineering.

Op,iGIiNAL PAGe- iS

OF pOOR QUALITY

